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Laid-on or fused explosive charges are currently widely used to remove residual stresses 
in welded plates. The practieal and physical aspects of this phenomenon are diseussed in a 
number of papers [I-3]. 

In particular, in [l], the symmetrical case of initial stresses, ayo = azo and ~xo = 0, 
was examined while studying the trajectory of the point representing the stress--strain state 
of the substance in the space of the principal stresses during the process of explosive load- 
ing and unloading. (The shock wave front is parallel to the surface of the metal, the axes 
ay and az lie in the plane of the surface, and the axis a x is perpendicular to the surface. 
The metal is assumed to be elastoplastic.) In this case, for any initial stresses, within 
the limits of elasticity, the straight line of the elastic stress reaches the yield surface 
at points belonging to some definite straight line, whose projection on the Ox, ay surface 
is the straight line QQ shown in Fig. | (in the case of a stretching wave, this is the 
straight line PP). The quantities OD = OE = OF = OG = as, the straight line OS is the pro- 
jection of the hydrostatic axis, and o s is the dynamXc yield stress. Under further loading, 
the image point moves along the straight line QQ. 

For ~.yo # ~ the loading trajectories are more complicated; as will be shown below, 
these trajectorles in the plastic region form a family of curves having as an asymptote for 
large o x straight lines whose projections on the plane ax, Oy are PP and QQ. 

The purpose of this paper is to determine these trajectories and based on them, the 
limits of applicability of the scheme presented in Fig. | in the case of unsymmetrical ini- 
tial stresses. The possibility of using this scheme is determined by the initial stresses 

ay o and azo and the magnitude of the load axk. 

Using the associated law for the flow [4] 

d e x p / S x  = d e u p / S  u = dezp /Sz  - -  ]d%l/IS], (1~. 
it is possible to obtain the system of equations 

dS~ 2 dS~, dS z 
4 Gde~, = Gdsx  = = - -  ( 2 )  

i - -  ~ 2% ] t +  2~ 2 i -{-  2 ~ "  

which p e r m i t s  f i n d i n g  the dependences  ax ,  ay , and az on the load  p a r a m e t e r  s x. The p o s s i b l e  
l oad  t r a j e c t o r i e s  in  the e l a s t i c  and p l a s t i c  r e g i o n s ,  c o r r e s p o n d i n g  to  s o l u t i o n s  of  the s y s -  
tem (2 ) ,  a re  shown in  F i g .  2 in  the  combined c o o r d i n a t e s  o f  the  p l a n e s  ax ,  ay and ax ,  a z .  
Here, the region bounded by the straight lines RR and RIRI is the projection of the flow 
cylinder, while the straight line QQ is the asymptote of the trajectories for o x + -~o; ax I 
corresponds to the onset of plastic flow. It is more convenient to examine the process in 
the coordinates ax, am, where a m = (I/2)(ay + oz). The corresponding trajectories are shown 
in Fig. 3. 

The loading is described as follows. 

I. The starting point belongs to the segment AD, amo = (1/2)(Oyo + azo). The same 
O ' -- 2 starting point can correspond to different AOo = ay o -- Ozo: iAao I < (~/~3)~T 2 -  

-- O m o ,  
lamol < aT, where a T i s  the  s t a t i c  y i e l d  s t r e s s .  I n  the  c a l c u l a t i o n s ,  i t  was assumed t h a t  
as = 3a T �9 

2. Elastic loading occurs along the straight line 

ax  = ( ( t  - - V ) / 4 ) ( O  m - -  Omo), for v=( t /3 )  Ox=2(Om--Om0 ). (3) 
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3. The point at which the flow surface is reached is characterized by the quantity 

i - - v  i' 3 ~ ' Omo), (4) 

=--~ ~ Aoo. For v = ]/3, Oxz = 3Sx~ + 2Omo. where Sxl ~]/3~/4o s 3 ~ 

4. Further loading is described by the following parametric equations, obtained by 
solving the system (2): 

AOx 2 (~e~--t ) Sx~ 
Y +t --- ' . o ~  ' ( 5 )  

% = ' 1 3 d + t  2t  + ' ~ ' s '  

where B = (2o s-3Sx:)/(2o s+3Sxl); t > 0; Ao x = Oxk - Oxl; Ao m = Omk -- ~ ~ k is the ampli- 
tude of the wave; Omk is the value of ~ corresponding to Oxk , while Oml corresponds to Ox~. 

The asymptotic dependence between Oxk and Omk for large amplitudes Oxk can be obtained 
from Eq. (5) as well as relations (3) and (4): ~ + ~ -- ~s. For this reason~ the loading 
trajectories in the plastic region in the coordinates o x -- o m have the form of the curve NR 
shown in Fig, 3. 

Analysis of the loading according to the simplified scheme presumes that the trajectory 
KNR can be replaced by the broken trajectory KQG and the quantity Ao can be set equal to 

! 

zero. The point P corresponds to an approximate unloading quantity Om2 ; the point T corre- 
sponds to the exact Om2. We shall denote the correction PT in terms of ~p, Op > O. 

Fig. 3 
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TABLE 1 

AO'~ 

Sx~ = ---~ 
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To completely determine the stress state after unloading, it is necessary to know ~v,n~, 
Op, and the difference in stresses after unloading Ao2 = Oy~ -- Oz2. The dependences of Ao 
and Op on Ao x with ~ = I/3, obtained by transforming system (5), have the following form in 

a parametric representation: 

Act ~ +__ 4 1/3-'6 exp (d2) op 6 

where the sign in the first equation coincides with the sign of Ago. 

Figure 4 presents the computed corrections with the parameters indicated in Table I= 
The dashed lines correspond to the quantity Op and the continuous lines to 5d. 

The algorithm for using the simplified scheme with the corrections is as follows. The 

quantities dyo and Ozo are calculated from the initial stresses Omo = (1/2)(~yo + ~ 
and AGo = dvo --Ozo, Then, taking into account the known amplikude of the wave Oxk , 
an approximate unloading value of Om2', (point P) is found. Then the value of Ao x = 
dxk- Oxz is determined. Using the graphs presented in Fig. 4 and &Ox, it is possible to 

obtain the values of Op and 5o2 and then Oy 2 and Oz~ 
! 

o v, = o~ q- (I/2) A~ 2 -- op, o=2 = om~ -- 0/2) A~= -- %. 

It is evident in Fig. 4 that the most important correction is Ad and the quantity Op 

can be neglected for AOx < -~s. 

If Om2 < -VT, then after the shock-wave process, the point T begins to drift compara- 
tively slowly (see Fig. 3) toward increasing Om. A calculation performed based on the asso- 
ciated law of flow (1) and the conditions for uniaxial deformation ey = Ez = 0, shows that 
the final state Om3 and &oa is determined by the system of equations: 

o7~ + (3/4)  Ao ;  = o~, A % / A c h  (~.~3/~,~) ~, 

where 7 = 3(I -- v)/(l + v); for v = I/3, y = 3/2. 

In the first approximation, we can assume that Om3 =-X~T and Ao3 = Ao2~.--OT/Omz) 3/~. 

In practical applications of the calculations presented above, it is important to know 
the correction Opx (see Fig. 3). The latter represents the difference between the exact and 
approximate amplitude of the wave, necessary for ohtaining a definite finite state Om~ char- 

acterized by the point T. 

The value of Opx can be determined from the transcendental equation Opx/Os = 4/[i + B 

exp (a -- Opx/ds)], where a = 2 + (3/Os)(Sx~ + Omo -- ore2), ore2 < Omo. 

The calculation performed with Om2 = 0 shows that for ds = 3OT, max(opx/Os) = 0.114, 
which is less than 6% of the amplitude of the wave Oxk, equal in this case to 2o s. For this 
reason, in practical calculations, this correction may be neglected. This is a result of the 
fact that an insignificant relative change in wave amplitude Oxk leads to larger changes in 

the final state, Omz/OT, since usually Oxk = 6o T. 

We should compare the characteristics of the dynamic shock wave process, taken into 
account in this work, with the quasistatic loading and unloading conditions. As shown (see, 
for example, [5, 6]), the real high-velocity pattern of the deformation of a viscoelasto- 
plastic substance can be successfully approximated by the usual elastoplastic quasistatic 
process, characterized by some effective dynamic yield stress, depending on the strain rate 
and the viscosity of the material. 
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For real strain rates, reached in the process of removing residual stresses by explosive 
working of such materials as,�9 example, St. 3 steel, the dynamic yield stress is 3-4 times 
greater than the static value. These data, based on experiments with high-speed stretching 
and compression of rods , are presented in [7]. 

In addition, the characteristic feature of the dynamic nature of deformation is included 
by introducing into the analysis the drift of the stresse d state of the substance toward the 
static yield stress. 

In conclusion, we thank Yu. I. Fadeenko for his assistance in this work and for discus- 
sion of the results. 
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RELAXATION OF SUBMICROSECOND PRESSURE PULSES IN A SOLID 

Yu. I. Meshcheryakov UDC 534.222 

Stress relaxation in dynamical problems of plasticity is described, from the standpoint 
of dislocation dynamics, by the Sokolovskii--Malvern--Duvall equation [I]: 

' Oa~j /Ot  - -  9 c ~ O ~ j / O t  = - -  a O e ~ / O t  ( 1 ) 

which takes into account the effect of velocity on the nature of the wave motion of the de- 
formation. The plastic strain rate tensor ~P. is written as the result of the simultaneous 

13 
gliding in opposite directions of postive and negative dislocations 

where the summation is over all the slip planes" +~) and -~(m) are the positive and nega- 
' ik ik 

tive dislocation density tensors. 

As a rule, the conditions of deformation at strain rates ~ < 103 ensure, on the average, 
equality of the positive and negative dislocations, which corresponds to a zero net Burgers 
vector of the dislocation structure. In the case of pulse or shock loading, however, these 
conditions may not be fulfilled. In accordance with the defi6ition of the dislocation den- 
sity tensor in continuum dislocation theory, the latter is written in terms of plastic dis- 
tortion gradients in the form aij = --eikIVkWlj- This means that in the presence of the large 
displacement gradients realized under high-speed loading the absolute values of the charge 
dislocation density may also be large. As shown in [2, 3], especially favorable conditions 
for the appearance of dislocation charges are realized in the contact loading zone, 

As is known, charge dislocations are sources of long-range internal stress fields in 
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